Uniaxial deformation of nanorod filled polymer nanocomposites: a coarse-grained molecular dynamics simulation.

نویسندگان

  • Yangyang Gao
  • Jun Liu
  • Jianxiang Shen
  • Liqun Zhang
  • Zhanhu Guo
  • Dapeng Cao
چکیده

A coarse-grained molecular dynamics simulation was used to investigate the stress-strain behavior of nanorod-filled polymer composites. The effects of the interfacial interaction, aspect ratio of fillers, filler functionalization, chemical couplings between the polymer and the filler and the filler loading on the mechanical reinforcement were explored. The results indicate that there exists an optimal nanorod volume fraction for elastomer reinforcement. The strong polymer-nanorod interaction enhances the reinforcement of polymer nanocomposites. Meanwhile, it is found that nanorods with longer length and smaller diameter, and the chemical functionalization of nanorods can help realize the efficient interfacial stress transfer. And excessive chemical couplings between polymers and nanorods are harmful to mechanical properties. An upturn in the modulus at large deformation is observed in the Mooney-Rivlin plot, attributed to the limited chain extensibility. Particularly, the medium polymer-nanorod interfacial strength and low nanorod volume loading will lead to better dispersion of nanorods. It is suggested that the reinforcement mechanism comes from the nanorod alignment and bond orientation, as well as from the limited extensibility of chain bridges at large deformation. In addition, an optimal nanorod volume fraction can also be explained by the strong polymer-nanorod network. Compared to glassy systems, the mechanism for the significantly enhanced reinforcement of rubbery systems is also demonstrated. In short, our simulation study of nanorod-induced mechanical reinforcement will provide a basic understanding of polymer reinforcement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical properties of CNT reinforced nano-cellular polymeric nanocomposite foams

Mechanics of CNT-reinforced nano-cellular PMMA nanocomposites are investigated using coarse-grained molecular dynamics simulations. Firstly, static uniaxial stretching of bulk PMMA polymer is simulated and the results are compared with literature. Then, nano-cellular foams with different relative densities are constructed and subjected to static uniaxial stretching and obtained stress-strain cu...

متن کامل

Tuning the Mechanical Properties of Polymer Nanocomposites Filled with Grafted Nanoparticles by Varying the Grafted Chain Length and Flexibility

By employing coarse-grained molecular dynamics simulation, we simulate the spatial organization of the polymer-grafted nanoparticles (NPs) in homopolymer matrix and the resulting mechanical performance, by particularly regulating the grafted chain length and flexibility. The morphologies ranging from the agglomerate, cylinder, sheet, and string to full dispersion are observed, by gradually incr...

متن کامل

Molecular dynamics simulation of the conductivity mechanism of nanorod filled polymer nanocomposites.

We adopted molecular dynamics simulation to study the conductive property of nanorod-filled polymer nanocomposites by focusing on the effects of the interfacial interaction, aspect ratio of the fillers, external shear field, filler-filler interaction and temperature. The variation of the percolation threshold is anti N-type with increasing interfacial interaction. It decreases with an increase ...

متن کامل

Molecular dynamics simulation of the rupture mechanism in nanorod filled polymer nanocomposites.

Through coarse-grained molecular dynamics simulation, we aim to uncover the rupture mechanism of polymer-nanorod nanocomposites by characterizing the structural and dynamic changes during the tension process. We find that the strain at failure is corresponding to the coalescence of a single void into larger voids, namely the change of the free volume. And the minimum of the Van der Walls (VDWL)...

متن کامل

Mechanical properties of carbon nanotube reinforced polymer nanocomposites: A coarse-grained model

In this work, a coarse-grained (CG) model of carbon nanotube (CNT) reinforced polymer matrix composites is developed. A distinguishing feature of the CG model is the ability to capture interactions between polymer chains and nanotubes. The CG potentials for nanotubes and polymer chains are calibrated using the strain energy conservation between CG models and full atomistic systems. The applicab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 30  شماره 

صفحات  -

تاریخ انتشار 2014